[PATCH v8 0/6] use per-vma locks for /proc/pid/maps reads

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Reading /proc/pid/maps requires read-locking mmap_lock which prevents any
other task from concurrently modifying the address space. This guarantees
coherent reporting of virtual address ranges, however it can block
important updates from happening. Oftentimes /proc/pid/maps readers are
low priority monitoring tasks and them blocking high priority tasks
results in priority inversion.

Locking the entire address space is required to present fully coherent
picture of the address space, however even current implementation does not
strictly guarantee that by outputting vmas in page-size chunks and
dropping mmap_lock in between each chunk. Address space modifications are
possible while mmap_lock is dropped and userspace reading the content is
expected to deal with possible concurrent address space modifications.
Considering these relaxed rules, holding mmap_lock is not strictly needed
as long as we can guarantee that a concurrently modified vma is reported
either in its original form or after it was modified.

This patchset switches from holding mmap_lock while reading /proc/pid/maps
to taking per-vma locks as we walk the vma tree. This reduces the
contention with tasks modifying the address space because they would have
to contend for the same vma as opposed to the entire address space.
Previous version of this patchset [1] tried to perform /proc/pid/maps
reading under RCU, however its implementation is quite complex and the
results are worse than the new version because it still relied on
mmap_lock speculation which retries if any part of the address space gets
modified. New implementaion is both simpler and results in less
contention. Note that similar approach would not work for /proc/pid/smaps
reading as it also walks the page table and that's not RCU-safe.

Paul McKenney's designed a test [2] to measure mmap/munmap latencies while
concurrently reading /proc/pid/maps. The test has a pair of processes
scanning /proc/PID/maps, and another process unmapping and remapping 4K
pages from a 128MB range of anonymous memory.  At the end of each 10
second run, the latency of each mmap() or munmap() operation is measured,
and for each run the maximum and mean latency is printed. The map/unmap
process is started first, its PID is passed to the scanners, and then the
map/unmap process waits until both scanners are running before starting
its timed test.  The scanners keep scanning until the specified
/proc/PID/maps file disappears.

The latest results from Paul:
Stock mm-unstable, all of the runs had maximum latencies in excess of
0.5 milliseconds, and with 80% of the runs' latencies exceeding a full
millisecond, and ranging up beyond 4 full milliseconds.  In contrast,
99% of the runs with this patch series applied had maximum latencies
of less than 0.5 milliseconds, with the single outlier at only 0.608
milliseconds.


[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [NTFS 3]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [NTFS 3]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux