On Tue, Jun 24, 2025 at 5:51 AM Christian Brauner <brauner@xxxxxxxxxx> wrote: > > On Thu, May 15, 2025 at 06:23:14PM +0000, Pasha Tatashin wrote: > > Introduce the user-space interface for the Live Update Orchestrator > > via ioctl commands, enabling external control over the live update > > process and management of preserved resources. > > > > Create a misc character device at /dev/liveupdate. Access > > to this device requires the CAP_SYS_ADMIN capability. > > > > A new UAPI header, <uapi/linux/liveupdate.h>, defines the necessary > > structures. The magic number is registered in > > Documentation/userspace-api/ioctl/ioctl-number.rst. > > > > Signed-off-by: Pasha Tatashin <pasha.tatashin@xxxxxxxxxx> > > --- > > .../userspace-api/ioctl/ioctl-number.rst | 1 + > > drivers/misc/liveupdate/Makefile | 1 + > > drivers/misc/liveupdate/luo_ioctl.c | 199 ++++++++++++ > > include/linux/liveupdate.h | 34 +- > > include/uapi/linux/liveupdate.h | 300 ++++++++++++++++++ > > 5 files changed, 502 insertions(+), 33 deletions(-) > > create mode 100644 drivers/misc/liveupdate/luo_ioctl.c > > create mode 100644 include/uapi/linux/liveupdate.h > > > > diff --git a/Documentation/userspace-api/ioctl/ioctl-number.rst b/Documentation/userspace-api/ioctl/ioctl-number.rst > > index 7a1409ecc238..279c124048f2 100644 > > --- a/Documentation/userspace-api/ioctl/ioctl-number.rst > > +++ b/Documentation/userspace-api/ioctl/ioctl-number.rst > > @@ -375,6 +375,7 @@ Code Seq# Include File Comments > > 0xB8 01-02 uapi/misc/mrvl_cn10k_dpi.h Marvell CN10K DPI driver > > 0xB8 all uapi/linux/mshv.h Microsoft Hyper-V /dev/mshv driver > > <mailto:linux-hyperv@xxxxxxxxxxxxxxx> > > +0xBA all uapi/linux/liveupdate.h <mailto:Pasha Tatashin <pasha.tatashin@xxxxxxxxxx> > > 0xC0 00-0F linux/usb/iowarrior.h > > 0xCA 00-0F uapi/misc/cxl.h Dead since 6.15 > > 0xCA 10-2F uapi/misc/ocxl.h > > diff --git a/drivers/misc/liveupdate/Makefile b/drivers/misc/liveupdate/Makefile > > index b4cdd162574f..7a0cd08919c9 100644 > > --- a/drivers/misc/liveupdate/Makefile > > +++ b/drivers/misc/liveupdate/Makefile > > @@ -1,4 +1,5 @@ > > # SPDX-License-Identifier: GPL-2.0 > > +obj-y += luo_ioctl.o > > obj-y += luo_core.o > > obj-y += luo_files.o > > obj-y += luo_subsystems.o > > diff --git a/drivers/misc/liveupdate/luo_ioctl.c b/drivers/misc/liveupdate/luo_ioctl.c > > new file mode 100644 > > index 000000000000..76c687ff650b > > --- /dev/null > > +++ b/drivers/misc/liveupdate/luo_ioctl.c > > @@ -0,0 +1,199 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > + > > +/* > > + * Copyright (c) 2025, Google LLC. > > + * Pasha Tatashin <pasha.tatashin@xxxxxxxxxx> > > + */ > > + > > +/** > > + * DOC: LUO ioctl Interface > > + * > > + * The IOCTL user-space control interface for the LUO subsystem. > > + * It registers a misc character device, typically found at ``/dev/liveupdate``, > > + * which allows privileged userspace applications (requiring %CAP_SYS_ADMIN) to > > + * manage and monitor the LUO state machine and associated resources like > > + * preservable file descriptors. > > + */ > > + > > +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt > > + > > +#include <linux/errno.h> > > +#include <linux/file.h> > > +#include <linux/fs.h> > > +#include <linux/init.h> > > +#include <linux/kernel.h> > > +#include <linux/miscdevice.h> > > +#include <linux/module.h> > > +#include <linux/uaccess.h> > > +#include <uapi/linux/liveupdate.h> > > +#include "luo_internal.h" > > + > > +static int luo_ioctl_fd_preserve(struct liveupdate_fd *luo_fd) > > +{ > > + struct file *file; > > + int ret; > > + > > + file = fget(luo_fd->fd); > > + if (!file) { > > + pr_err("Bad file descriptor\n"); > > + return -EBADF; > > + } > > + > > + ret = luo_register_file(&luo_fd->token, file); > > + if (ret) > > + fput(file); > > + > > + return ret; > > +} > > + > > +static int luo_ioctl_fd_unpreserve(u64 token) > > +{ > > + return luo_unregister_file(token); > > +} > > + > > +static int luo_ioctl_fd_restore(struct liveupdate_fd *luo_fd) > > +{ > > + struct file *file; > > + int ret; > > + int fd; > > + > > + fd = get_unused_fd_flags(O_CLOEXEC); > > + if (fd < 0) { > > + pr_err("Failed to allocate new fd: %d\n", fd); > > + return fd; > > + } > > + > > + ret = luo_retrieve_file(luo_fd->token, &file); > > + if (ret < 0) { > > + put_unused_fd(fd); > > + > > + return ret; > > + } > > + > > + fd_install(fd, file); > > + luo_fd->fd = fd; > > + > > + return 0; > > +} > > + > > +static int luo_open(struct inode *inodep, struct file *filep) > > +{ > > + if (!capable(CAP_SYS_ADMIN)) > > + return -EACCES; > > + > > + if (filep->f_flags & O_EXCL) > > + return -EINVAL; > > + > > + return 0; > > +} > > + > > +static long luo_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) > > +{ > > + void __user *argp = (void __user *)arg; > > + struct liveupdate_fd luo_fd; > > + enum liveupdate_state state; > > + int ret = 0; > > + u64 token; > > + > > + if (_IOC_TYPE(cmd) != LIVEUPDATE_IOCTL_TYPE) > > + return -ENOTTY; > > + > > + switch (cmd) { > > + case LIVEUPDATE_IOCTL_GET_STATE: > > + state = READ_ONCE(luo_state); > > + if (copy_to_user(argp, &state, sizeof(luo_state))) > > + ret = -EFAULT; > > + break; > > + > > + case LIVEUPDATE_IOCTL_EVENT_PREPARE: > > + ret = luo_prepare(); > > + break; > > + > > + case LIVEUPDATE_IOCTL_EVENT_FREEZE: > > + ret = luo_freeze(); > > + break; > > + > > + case LIVEUPDATE_IOCTL_EVENT_FINISH: > > + ret = luo_finish(); > > + break; > > + > > + case LIVEUPDATE_IOCTL_EVENT_CANCEL: > > + ret = luo_cancel(); > > + break; > > + > > + case LIVEUPDATE_IOCTL_FD_PRESERVE: > > + if (copy_from_user(&luo_fd, argp, sizeof(luo_fd))) { > > + ret = -EFAULT; > > + break; > > + } > > + > > + ret = luo_ioctl_fd_preserve(&luo_fd); > > + if (!ret && copy_to_user(argp, &luo_fd, sizeof(luo_fd))) > > + ret = -EFAULT; > > + break; > > + > > + case LIVEUPDATE_IOCTL_FD_UNPRESERVE: > > + if (copy_from_user(&token, argp, sizeof(u64))) { > > + ret = -EFAULT; > > + break; > > + } > > + > > + ret = luo_ioctl_fd_unpreserve(token); > > + break; > > + > > + case LIVEUPDATE_IOCTL_FD_RESTORE: > > + if (copy_from_user(&luo_fd, argp, sizeof(luo_fd))) { > > + ret = -EFAULT; > > + break; > > + } > > + > > + ret = luo_ioctl_fd_restore(&luo_fd); > > + if (!ret && copy_to_user(argp, &luo_fd, sizeof(luo_fd))) > > + ret = -EFAULT; > > + break; > > + > > + default: > > + pr_warn("ioctl: unknown command nr: 0x%x\n", _IOC_NR(cmd)); > > + ret = -ENOTTY; > > + break; > > + } > > + > > + return ret; > > +} > > + > > +static const struct file_operations fops = { > > + .owner = THIS_MODULE, > > + .open = luo_open, > > + .unlocked_ioctl = luo_ioctl, > > +}; > > + > > +static struct miscdevice liveupdate_miscdev = { > > + .minor = MISC_DYNAMIC_MINOR, > > + .name = "liveupdate", > > + .fops = &fops, > > +}; > > I'm not sure why people are so in love with character device based apis. > It's terrible. It glues everything to devtmpfs which isn't namespacable > in any way. It's terrible to delegate and extremely restrictive in terms > of extensiblity if you need additional device entries (aka the loop > driver folly). > > One stupid question: I probably have asked this before and just swapped > out that I a) asked this already and b) received an explanation. But why > isn't this a singleton simple in-memory filesystem with a flat > hierarchy? Hi Christian, Thank you for the detailed feedback and for raising this important design question. I appreciate the points you've made about the benefits of a filesystem-based API. I have thought thoroughly about this and explored various alternatives before settling on the ioctl-based interface. This design isn't a sudden decision but is based on ongoing conversations that have been happening for over two years at LPC, as well as incorporating direct feedback I received on LUOv1 at LSF/MM. The choice for an ioctl-based character device was ultimately driven by the specific lifecycle and dependency management requirements of the live update process. While a filesystem API offers great advantages in visibility and hierarchy, filesystems are not typically designed to be state machines with the complex lifecycle, dependency, and ownership tracking that LUO needs to manage. Let me elaborate on the key aspects that led to the current design: 1. session based lifecycle management: The preservation of an FD is tied to the open instance of /dev/liveupdate. If a userspace agent opens /dev/liveupdate, registers several FDs for preservation, and then crashes or exits before the prepare phase is triggered, all FDs it registered are automatically unregistered. This "session-scoped" behavior is crucial to prevent leaking preserved resources into the next kernel if the controlling process fails. This is naturally handled by the open() and release() file operations on a character device. It's not immediately obvious how a similar automatic, session-based cleanup would be implemented with a singleton filesystem. 2. state machine: LUO is fundamentally a state machine (NORMAL -> PREPARED -> FROZEN -> UPDATED -> NORMAL). As part of this, it provides a crucial guarantee: any resource that was successfully preserved but not explicitly reclaimed by userspace in the new kernel by the time the FINISH event is triggered will be automatically cleaned up and its memory released. This prevents leaks of unreclaimed resources and is managed by the orchestrator, which is a concept that doesn't map cleanly onto standard VFS semantics. 3. dependency tracking: Unlike normal files, preserved resources for live update have strong, often complex interdependencies. For example, a kvmfd might depend on a guestmemfd; an iommufd can depend on vfiofd, eventfd, memfd, and kvmfd. LUO's current design provides explicit callback points (prepare, freeze) where these dependencies can be validated and tracked by the participating subsystems. If a dependency is not met when we are about to freeze, we can fail the entire operation and return an error to userspace. The cancel callback further allows this complex dependency graph to be unwound safely. A filesystem interface based on linkat() or unlink() doesn't inherently provide these critical, ordered points for dependency verification and rollback. While I agree that a filesystem offers superior introspection and integration with standard tools, building this complex, stateful orchestration logic on top of VFS seemed to be forcing a square peg into a round hole. The ioctl interface, while more opaque, provides a direct and explicit way to command the state machine and manage these complex lifecycle and dependency rules. Thanks, Pasha