> -----Original Message----- > From: Nhat Pham <nphamcs@xxxxxxxxx> > Sent: Thursday, August 14, 2025 1:58 PM > To: Sridhar, Kanchana P <kanchana.p.sridhar@xxxxxxxxx> > Cc: linux-kernel@xxxxxxxxxxxxxxx; linux-mm@xxxxxxxxx; > hannes@xxxxxxxxxxx; yosry.ahmed@xxxxxxxxx; chengming.zhou@xxxxxxxxx; > usamaarif642@xxxxxxxxx; ryan.roberts@xxxxxxx; 21cnbao@xxxxxxxxx; > ying.huang@xxxxxxxxxxxxxxxxx; akpm@xxxxxxxxxxxxxxxxxxxx; > senozhatsky@xxxxxxxxxxxx; linux-crypto@xxxxxxxxxxxxxxx; > herbert@xxxxxxxxxxxxxxxxxxx; davem@xxxxxxxxxxxxx; > clabbe@xxxxxxxxxxxx; ardb@xxxxxxxxxx; ebiggers@xxxxxxxxxx; > surenb@xxxxxxxxxx; Accardi, Kristen C <kristen.c.accardi@xxxxxxxxx>; > Gomes, Vinicius <vinicius.gomes@xxxxxxxxx>; Feghali, Wajdi K > <wajdi.k.feghali@xxxxxxxxx>; Gopal, Vinodh <vinodh.gopal@xxxxxxxxx> > Subject: Re: [PATCH v11 22/24] mm: zswap: Allocate pool batching resources > if the compressor supports batching. > > On Thu, Jul 31, 2025 at 9:36 PM Kanchana P Sridhar > <kanchana.p.sridhar@xxxxxxxxx> wrote: > > > > This patch sets up zswap for allocating per-CPU resources optimally for > > non-batching and batching compressors. > > > > A new ZSWAP_MAX_BATCH_SIZE constant is defined as 8U, to set an upper > > limit on the number of pages in large folios that will be batch > > compressed. > > > > As per Herbert's comments in [2] in response to the > > crypto_acomp_batch_compress() and crypto_acomp_batch_decompress() > API > > proposed in [1], this series does not create new crypto_acomp batching > > API. Instead, zswap compression batching uses the existing > > crypto_acomp_compress() API in combination with the "void *kernel_data" > > member added to "struct acomp_req" earlier in this series. > > > > It is up to the compressor to manage multiple requests, as needed, to > > accomplish batch parallelism. zswap only needs to allocate the per-CPU > > dst buffers according to the batch size supported by the compressor. > > > > A "u8 compr_batch_size" member is added to "struct zswap_pool", as per > > Yosry's suggestion. pool->compr_batch_size is set as the minimum of the > > compressor's max batch-size and ZSWAP_MAX_BATCH_SIZE. Accordingly, it > > proceeds to allocate the necessary compression dst buffers in the > > per-CPU acomp_ctx. > > > > Another "u8 batch_size" member is added to "struct zswap_pool" to store > > the unit for batching large folio stores: for batching compressors, this > > is the pool->compr_batch_size. For non-batching compressors, this is > > ZSWAP_MAX_BATCH_SIZE. > > > > zswap does not use more than one dst buffer yet. Follow-up patches will > > actually utilize the multiple acomp_ctx buffers for batch > > compression/decompression of multiple pages. > > > > Thus, ZSWAP_MAX_BATCH_SIZE limits the amount of extra memory used > for > > batching. There is a small extra memory overhead of allocating > > the acomp_ctx->buffers array for compressors that do not support > > batching: On x86_64, the overhead is 1 pointer per-CPU (i.e. 8 bytes). > > > > [1]: https://patchwork.kernel.org/project/linux- > mm/patch/20250508194134.28392-11-kanchana.p.sridhar@xxxxxxxxx/ > > [2]: https://patchwork.kernel.org/comment/26382610 > > > > Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@xxxxxxxxx> > > Mostly LGTM. Just a couple of questions below: Hi Nhat, Thanks for taking the time to review the patches! Sure, these are great questions, responses are inline. > > > --- > > mm/zswap.c | 82 +++++++++++++++++++++++++++++++++++++++++------- > ------ > > 1 file changed, 63 insertions(+), 19 deletions(-) > > > > diff --git a/mm/zswap.c b/mm/zswap.c > > index efd501a7fe294..63a997b999537 100644 > > --- a/mm/zswap.c > > +++ b/mm/zswap.c > > @@ -80,6 +80,9 @@ static bool zswap_pool_reached_full; > > > > #define ZSWAP_PARAM_UNSET "" > > > > +/* Limit the batch size to limit per-CPU memory usage for dst buffers. */ > > +#define ZSWAP_MAX_BATCH_SIZE 8U > > + > > static int zswap_setup(void); > > > > /* Enable/disable zswap */ > > @@ -147,7 +150,7 @@ struct crypto_acomp_ctx { > > struct crypto_acomp *acomp; > > struct acomp_req *req; > > struct crypto_wait wait; > > - u8 *buffer; > > + u8 **buffers; > > struct mutex mutex; > > bool is_sleepable; > > }; > > @@ -166,6 +169,8 @@ struct zswap_pool { > > struct work_struct release_work; > > struct hlist_node node; > > char tfm_name[CRYPTO_MAX_ALG_NAME]; > > + u8 compr_batch_size; > > + u8 batch_size; > > Apologies if this is explained elsewhere, but I'm very confused - why > do we need both of these two fields? No worries. This was my thinking in keeping these separate: "compr_batch_size" is indicative of the number of batching resources allocated per-CPU. Hence, zswap_compress() uses this to determine if we need to compress one page at a time in the input batch of pages. "batch_size" represents the number of pages that will be sent to zswap_compress() as a batch. > > Seems like batch_size is defined below, and never changed: > > pool->batch_size = (pool->compr_batch_size > 1) ? > pool->compr_batch_size : ZSWAP_MAX_BATCH_SIZE; > > Can we just determine this in zswap_store() as a local variable? I figured since the number of zswap_pools at any given time is less than or equal to 2 (IIRC), it should be a good compromise to add these two u8 members for latency reasons, so that this doesn't have to be computed per call to zswap_store(). > > > > }; > > > > /* Global LRU lists shared by all zswap pools. */ > > @@ -258,8 +263,10 @@ static void __zswap_pool_empty(struct > percpu_ref *ref); > > * zswap_cpu_comp_prepare(), not others. > > * - Cleanup acomp_ctx resources on all cores in zswap_pool_destroy(). > > */ > > -static void acomp_ctx_dealloc(struct crypto_acomp_ctx *acomp_ctx) > > +static void acomp_ctx_dealloc(struct crypto_acomp_ctx *acomp_ctx, u8 > nr_buffers) > > { > > + u8 i; > > + > > if (IS_ERR_OR_NULL(acomp_ctx)) > > return; > > > > @@ -269,7 +276,11 @@ static void acomp_ctx_dealloc(struct > crypto_acomp_ctx *acomp_ctx) > > if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) > > crypto_free_acomp(acomp_ctx->acomp); > > > > - kfree(acomp_ctx->buffer); > > + if (acomp_ctx->buffers) { > > + for (i = 0; i < nr_buffers; ++i) > > + kfree(acomp_ctx->buffers[i]); > > + kfree(acomp_ctx->buffers); > > + } > > } > > > > static struct zswap_pool *zswap_pool_create(char *type, char > *compressor) > > @@ -290,6 +301,7 @@ static struct zswap_pool *zswap_pool_create(char > *type, char *compressor) > > return NULL; > > } > > > > + /* Many things rely on the zero-initialization. */ > > pool = kzalloc(sizeof(*pool), GFP_KERNEL); > > if (!pool) > > return NULL; > > @@ -352,13 +364,28 @@ static struct zswap_pool > *zswap_pool_create(char *type, char *compressor) > > goto ref_fail; > > INIT_LIST_HEAD(&pool->list); > > > > + /* > > + * Set the unit of compress batching for large folios, for quick > > + * retrieval in the zswap_compress() fast path: > > + * If the compressor is sequential (@pool->compr_batch_size is 1), > > + * large folios will be compressed in batches of > ZSWAP_MAX_BATCH_SIZE > > + * pages, where each page in the batch is compressed sequentially. > > + * We see better performance by processing the folio in batches of > > + * ZSWAP_MAX_BATCH_SIZE, due to cache locality of working set > > + * structures. > > + */ > > + pool->batch_size = (pool->compr_batch_size > 1) ? > > + pool->compr_batch_size : ZSWAP_MAX_BATCH_SIZE; > > + > > zswap_pool_debug("created", pool); > > > > return pool; > > > > ref_fail: > > for_each_possible_cpu(cpu) > > - acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu)); > > + acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu), > > + pool->compr_batch_size); > > + > > error: > > if (pool->acomp_ctx) > > free_percpu(pool->acomp_ctx); > > @@ -417,7 +444,8 @@ static void zswap_pool_destroy(struct zswap_pool > *pool) > > zswap_pool_debug("destroying", pool); > > > > for_each_possible_cpu(cpu) > > - acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu)); > > + acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu), > > + pool->compr_batch_size); > > > > free_percpu(pool->acomp_ctx); > > > > @@ -876,6 +904,7 @@ static int zswap_cpu_comp_prepare(unsigned int > cpu, struct hlist_node *node) > > struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); > > struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, > cpu); > > int ret = -ENOMEM; > > + u8 i; > > > > /* > > * The per-CPU pool->acomp_ctx is zero-initialized on allocation. > > @@ -888,10 +917,6 @@ static int zswap_cpu_comp_prepare(unsigned int > cpu, struct hlist_node *node) > > if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) > > return 0; > > > > - acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, > cpu_to_node(cpu)); > > - if (!acomp_ctx->buffer) > > - return ret; > > - > > acomp_ctx->acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, > cpu_to_node(cpu)); > > if (IS_ERR_OR_NULL(acomp_ctx->acomp)) { > > pr_err("could not alloc crypto acomp %s : %ld\n", > > @@ -904,17 +929,36 @@ static int zswap_cpu_comp_prepare(unsigned int > cpu, struct hlist_node *node) > > acomp_ctx->req = acomp_request_alloc(acomp_ctx->acomp); > > if (IS_ERR_OR_NULL(acomp_ctx->req)) { > > pr_err("could not alloc crypto acomp_request %s\n", > > - pool->tfm_name); > > + pool->tfm_name); > > Is this intentional? :) Yes, it is indeed :). No issue if I should revert. Thanks, Kanchana > > > goto fail; > > } > > > > - crypto_init_wait(&acomp_ctx->wait); > > + /* > > + * Allocate up to ZSWAP_MAX_BATCH_SIZE dst buffers if the > > + * compressor supports batching. > > + */ > > + pool->compr_batch_size = min(ZSWAP_MAX_BATCH_SIZE, > > + crypto_acomp_batch_size(acomp_ctx->acomp)); > > + > > + acomp_ctx->buffers = kcalloc_node(pool->compr_batch_size, sizeof(u8 > *), > > + GFP_KERNEL, cpu_to_node(cpu)); > > + if (!acomp_ctx->buffers) > > + goto fail; > > + > > + for (i = 0; i < pool->compr_batch_size; ++i) { > > + acomp_ctx->buffers[i] = kmalloc_node(PAGE_SIZE * 2, > GFP_KERNEL, > > + cpu_to_node(cpu)); > > + if (!acomp_ctx->buffers[i]) > > + goto fail; > > + } > > > > /* > > * if the backend of acomp is async zip, crypto_req_done() will wakeup > > * crypto_wait_req(); if the backend of acomp is scomp, the callback > > * won't be called, crypto_wait_req() will return without blocking. > > */ > > + crypto_init_wait(&acomp_ctx->wait); > > + > > acomp_request_set_callback(acomp_ctx->req, > CRYPTO_TFM_REQ_MAY_BACKLOG, > > crypto_req_done, &acomp_ctx->wait); > > > > @@ -922,7 +966,7 @@ static int zswap_cpu_comp_prepare(unsigned int > cpu, struct hlist_node *node) > > return 0; > > > > fail: > > - acomp_ctx_dealloc(acomp_ctx); > > + acomp_ctx_dealloc(acomp_ctx, pool->compr_batch_size); > > return ret; > > } > > > > @@ -942,7 +986,7 @@ static bool zswap_compress(struct page *page, > struct zswap_entry *entry, > > > > mutex_lock(&acomp_ctx->mutex); > > > > - dst = acomp_ctx->buffer; > > + dst = acomp_ctx->buffers[0]; > > sg_init_table(&input, 1); > > sg_set_page(&input, page, PAGE_SIZE, 0); > > > > @@ -1003,19 +1047,19 @@ static bool zswap_decompress(struct > zswap_entry *entry, struct folio *folio) > > > > acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); > > mutex_lock(&acomp_ctx->mutex); > > - obj = zpool_obj_read_begin(zpool, entry->handle, acomp_ctx->buffer); > > + obj = zpool_obj_read_begin(zpool, entry->handle, acomp_ctx- > >buffers[0]); > > > > /* > > * zpool_obj_read_begin() might return a kmap address of highmem > when > > - * acomp_ctx->buffer is not used. However, sg_init_one() does not > > - * handle highmem addresses, so copy the object to acomp_ctx- > >buffer. > > + * acomp_ctx->buffers[0] is not used. However, sg_init_one() does not > > + * handle highmem addresses, so copy the object to acomp_ctx- > >buffers[0]. > > */ > > if (virt_addr_valid(obj)) { > > src = obj; > > } else { > > - WARN_ON_ONCE(obj == acomp_ctx->buffer); > > - memcpy(acomp_ctx->buffer, obj, entry->length); > > - src = acomp_ctx->buffer; > > + WARN_ON_ONCE(obj == acomp_ctx->buffers[0]); > > + memcpy(acomp_ctx->buffers[0], obj, entry->length); > > + src = acomp_ctx->buffers[0]; > > } > > > > sg_init_one(&input, src, entry->length); > > -- > > 2.27.0 > >