On Thu, Apr 17, 2025 at 02:49:38PM +0800, Qingfang Deng wrote: > +static __always_inline u64 riscv_zbb_swab64(u64 val) > +{ > + asm (".option push\n" > + ".option arch,+zbb\n" > + "rev8 %0, %1\n" > + ".option pop\n" > + : "=r" (val) : "r" (val)); > + return val; > +} > + > +static __always_inline __uint128_t get_unaligned_be128(const u8 *p) > +{ > + __uint128_t val; > +#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS > + val = *(__uint128_t *)p; > + val = riscv_zbb_swab64(val >> 64) | (__uint128_t)riscv_zbb_swab64(val) << 64; > +#else > + val = (__uint128_t)p[0] << 120; > + val |= (__uint128_t)p[1] << 112; > + val |= (__uint128_t)p[2] << 104; > + val |= (__uint128_t)p[3] << 96; > + val |= (__uint128_t)p[4] << 88; > + val |= (__uint128_t)p[5] << 80; > + val |= (__uint128_t)p[6] << 72; > + val |= (__uint128_t)p[7] << 64; > + val |= (__uint128_t)p[8] << 56; > + val |= (__uint128_t)p[9] << 48; > + val |= (__uint128_t)p[10] << 40; > + val |= (__uint128_t)p[11] << 32; > + val |= (__uint128_t)p[12] << 24; > + val |= (__uint128_t)p[13] << 16; > + val |= (__uint128_t)p[14] << 8; > + val |= (__uint128_t)p[15]; > +#endif > + return val; > +} > + > +static __always_inline void put_unaligned_be128(__uint128_t val, u8 *p) > +{ > +#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS > + *(__uint128_t *)p = riscv_zbb_swab64(val >> 64) | (__uint128_t)riscv_zbb_swab64(val) << 64; > +#else > + p[0] = val >> 120; > + p[1] = val >> 112; > + p[2] = val >> 104; > + p[3] = val >> 96; > + p[4] = val >> 88; > + p[5] = val >> 80; > + p[6] = val >> 72; > + p[7] = val >> 64; > + p[8] = val >> 56; > + p[9] = val >> 48; > + p[10] = val >> 40; > + p[11] = val >> 32; > + p[12] = val >> 24; > + p[13] = val >> 16; > + p[14] = val >> 8; > + p[15] = val; > +#endif > +} Please help properly optimize swab*() and {get,put}_unaligned_* for RISC-V first, before considering random hacks like this. https://lore.kernel.org/r/20250403-riscv-swab-v3-0-3bf705d80e33@xxxxxxxxxxxx is working on swab*(). > + /* Multiplication (without Karatsuba) */ > + t0 = clmul128(p_lo, k_lo); > + t1 = clmul128(p_lo, k_hi); > + t2 = clmul128(p_hi, k_lo); > + t3 = clmul128(p_hi, k_hi); > + mid = t1 ^ t2; > + lo = t0 ^ (mid << 64); > + hi = t3 ^ (mid >> 64); There is no need to explicitly XOR 'mid << 64' into lo and 'mid >> 64' into hi. Take a look at how arch/x86/crypto/aes-gcm-*.S do it. Also, since this is only doing one block at a time and does not use Karatsuba multiplication, the single-step reduction would work well here. See aes-gcm-aesni-x86_64.S. - Eric